
Algorithms for the polynomial zeros of degree 2 of the 3-j and the 6-j coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 3779

(http://iopscience.iop.org/0305-4470/22/18/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 22 (1989) 3779-3788. Printed in the UK 

Algorithms for the polynomial zeros of degree 2 of the 3-j and 
the 6-j coefficients 

K Srinivasa Raot and Charles B Chiu 
Center for Particle Theory, University of Texas, Austin, TX 78712, USA 

Received 4 August 1988, in final form 25 April 1989 

Abstract. Simple algorithms, which are based on the principle of factorisation of an integer, 
are proposed to generate the polynomial zeros of degree 2 of the 3-j and 6- j  coefficients. 

1. Introduction 

In recent years considerable interest has been generated by the paper of Koozekanani 
and Biedenharn (1974) (see also Biedenharn and Louck 1981) to study non-trivial or 
polynomial zeros of the 3-j  and 6-j  angular momentum coefficients. Systematic treat- 
ment of the study of the polynomial zeros of degree 1 of the 6-j coefficient has been 
made from the point of view of the realisations of the algebra of exceptional Lie groups 
by Van den Berghe et a1 (1983, 1984) or from the point of view of multiplicative 
Diophantine equations by Brudno (1989,  Brudno and Louck (1985), Srinivasa Rao 
and Rajeswari (1984, 1985a, b, 1986) and Srinivasa Rao et a1 (1988). More recently, 
Louck and Stein (1987) and Beyer et a1 (1986) have shown that solutions of the 
quadratic Diophantine equation, known as Pell’s equation (see Dickson 1952), are 
related to polynomial zeros of degree 2 of the 3-j and 6-j coefficients. They showed 
that this relation involves transformations of quadratic forms over the integers and the 
orbit classification of zeros of Pell’s equation. They gave an algorithm for determining 
numerically the fundamental solutions of Pell’s equation. However, they emphasise 
that, in the case of the 6-j coefficient, the zeros obtained by them do not include all 
the polynomial zeros of degree 2. 

In § 2 we give the key definitions and in § 3 we discuss our algorithms for generating 
the polynomial zeros of degree 2 of the 3- j  and 6-j coefficients, using the principle of 
factorisation of an integer and the solution to a quadratic (in the case of the 3-j) or 
a cubic (in the case of the 6-j) equation. In § 4 we present a discussion of the results 
based on the algorithms. 

2. Key definitions 

It has been shown by one of us (Srinivasa Rao 1978) that the 3-j  coefficient can be 
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-jl + J 2  + j 3  jl -j2 + j 3  j ,  + j 2  - j3  
j I -ml  j2-m2 j3-m3 
j l+ml j2+m2 j3+m3 

represented by a set of six 3 F z ( l )  factors: 

. (3 1 

i 

= 6 ( m l + m 2 + m , , ~ ) ( - 1 ) " ' p q r '  n [ R,,, !/( J + 1 )  
i , h = l  

x [ r ( l - A ,  1 - B , l - C ,  D,E)]- ' ,F,(A,B,  C ;  D , E ;  1) 
where 

A=-RZp B = - R3, C = -RI ,  D =  R3r- RZ,, + 1 

E=R2r -R3y+1  

r(x, y ,  . . .) = r ( x ) r ( y )  . . . J = j ,  + j 2 + j 3  
and 

R3, - R2q for even permutations 
for odd permutations c r ( p q r )  = { R3,, - Rzq + J 

{ I: J} = ( - i ) E + l N r ( i  - E )  

( 5 )  
x [I-( 1 - A, 1 - B, 1 - C, 1 - D, F, G)]-'4F3(A, B, C, D ;  E, F, G; 1 )  

where 

N = A( abe)A( &)A( acf )A(  b d f )  
A =  - R I P  B=-R2p C E - R ~ ~  D = - R4,, 

E = -RI, - RZp - R3q - R4r - 1 F = R3q - R3, + 1 G = Rcr- R4, + 1 

for ( p q r )  = (123) cyclic; with Rik being the elements of L..e Bargmann (196 
Shelepin (1964) array: 

P I - a I  P 2 - a l  P 3 - " 1  

P1-a2 P 2 - a 2  @.?-a* 
P l - a 3  P 2 - a 3  P 3 - a 3  

P l - f f 4  P 2 - f f 4  p 3 - a 4  

(6) 

) and 

(7) 
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where 
a ,  = a + b + e  a , = c + d + e  a3 = a + c +  f a4 = b + d  +f 
p ,  = a  + b + c +  d 
and 

p2= a + d  + e +  f p3 = b + c +  e +  f 

A ( X Y Z )  = [( - X  + y + z ) !  ( X  - y + z ) !  ( X + Y  - z ) ! / ( x  + y  + z + 1)!]”2. 
Equivalently, the 6-j coefficient can also be represented by a set I1 of four 4F3(1) 

factors (Srinivasa Rao and Venkatesh 1977) as 

{ J} = ( - l )A’ -2Nr (Ar ) [ r ( l  - B’, 1 - C’, 1 - D’, E’,  F‘ ,  G’)]-’ 

x ,F3(A’, B’, C’, D’; E’, F’, G‘; 1) (8) 
where, using the conditions satisfied by the Rlk,  the numerator and denominator 
parameters of this set can be shown to be 

(9) 
E ’ =  R,1- Rpl+ 1 
for (pqrs )  = (1234) cyclically. Obviously, polynomial zeros of degree n arise when the 
sum of the first n + l  terms of the 4F3(l)  occurring in ( 5 )  or (8) adds to zero. The 
polynomial zeros of degree 2, studied by Beyer et a1 (1986), are obtained when D = -2 
and the parameters satisfy the condition: 

P 3  
D’= -R 

P 2  
B’= -R C ’ =  -R A‘=  Rq2+ R,,+ R,,+2 P I  

F’= R,, - R,, + 1 G’=R,,-R,1+1 

A ( A +  l ) B ( B + l ) C ( C + 1 ) - 2 A B C ( E +  l ) ( F + I ) ( G +  1) 
+ E ( E  + l ) F ( F +  1)G( G +  1) = 0 (10) 

or 
A’(A’+ l )B’(B’+l)C’(C’+1)-2A’B’C’(E’+l)(F’+ l ) ( G ’ + l )  

+ E ’ ( E ’ + I ) F ’ ( F ’ + l ) G ’ ( G ‘ +  1 )=0 .  (10‘) 
In the following section we discuss simple algorithms to generate all the polynomial 
zeros of degree 2 of the 3- j  and 6-j coefficients. 

3. Algorithms to generate degree 2 polynomial zeros 

Recently, Louck and Stein (1987) and Beyer et a1 (1986) studied the polynomial zeros 
of degree 2 of the 3-j and 6-j  coefficients in those special cases where the three-term 
general forms (4), (10) and (10‘) can be factored into two parts, one of which is a 
quadratic form related to the generalised Pel1 equation: 

where 5 is a positive integer and 7 is a positive or negative integer. (The other part 
has no non-trivial zeros.) The authors then exploit the known orbit classification of 
solutions of Pell’s equation to obtain classes of polynomial zeros of degree 2 of the 
3-j  and 6-j coefficients. However, they emphasise that their method does not generate 
all the polynomial zeros of degree 2. 

In the case of the 3-j coefficient, we consider D and E, the denominator parameters 
of the set of 3F2(1) factors, to take integer values with D S  E ( E  = 1 ,2 , .  . . , N ) .  Let 
c, = ( D  + 1)( E + 1) and c2 = DEc, . Then (4) becomes 

x 2 - t y 2 =  q (11) 

AB(A+ 1)( B + 1) -2cIAB = - ~ 2  (12) 
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which can be simplified into 

U( U + U )  = - c2 (13) 
where U = AB and v = A + B - 2cl + 1 .  Since c2 is an integer, we find all the divisors 
of c2. If U is a divisor, then by (13), U = - c 2 / u  -U. Given AB = U and A +  B = 
U + 2c, - 1, using the elementary identity: ( A  - B)‘ = ( A  + B)’-4AB, A - B is found. 
Since we are solving ( 4 )  for polynomial zeros of degree 2, C = -2, A and B being 
negative integer parameters, they must each be less than or equal to - 2  so that we 
must have AB 2 4 and A + B -4. From A + B and A - B, we solve (algebraically) 
for A and B. Thus, we get the set of values of A and B (for a given D and E )  from 
all the divisors of c2. We now state our algorithm for the generation of polynomial 
zeros of degree 2 of the 3- j  coefficient. 

Algorithm 1 .  

these into a nest of loops. 
(i) Choose E to take values 1 to N and D to take values 1 s D s  E by arranging 

(ii) Find the divisors of c 2 =  c , ( D E ) ,  where cI = ( D S  1 ) ( E  + 1). 
(iii) For each divisor U, find U =  - c2 /u  - U and hence A + B - 2c, + 1. 
(iv) For U 2 4 and A + B S -4, let x = ( A +  B)‘-4u. Then if x < 0, no solution 

exists and so go to (iii); if x = 0, A = B = ( v  + 2 c ,  - 1 ) / 2  is a solution; if x > 0, find m 
s u c h t h a t x = m * , f o r s u c h a n  m, A = ( v + 2 c , - l + m ) / 2 a n d B = ( u S 2 c , - l - m ) / 2 i s  
a solution, provided A 3 -2 and B 3 -2. 

(v) Having found the solution ( A  and B for a given D and E, when C = -2), 
repeat the procedure for the next divisor of c2,  i.e. go to step (iii), to find the set of 
all A,  B which satisfy (12). 

(vi) For each A,  B, 0, E (and C = -2), find the polynomial zero of degree 2 of 
the 3-j  coefficient. 

In the case of the 6- j  coefficient, the equation to be solved is ( I O )  or (IO’). We 
choose to work with set I1 of 4 F 3 ( l ) ,  since the denominator parameters E ’ ,  F‘ and G’ 
are required to be positive integers, let them take integer values 1 to N, with E ’ 2  F ’ 3  G‘.  
Let c ’ , = ( E ’ + l ) ( F ‘ S l ) ( G ’ + 1 ) ,  c h = c { E ’ F ‘ G ‘ ,  c 3 = E ’ + F ‘ + G ’ + 2  and c4=2c i - c3 .  
Then (IO’) becomes 

U’( U’+ U‘) = -c; (14 )  
where U ’  = A’B‘C‘ and U ’  = A‘B’+ ( A ’ +  B’)C’+ c4 using the Saalschutzian condition. 
As before, since c; is an  integer, we find all the divisors of c;, say d , .  Since U‘= A‘B’C’,  
we need to find the divisors of U ’  and let these be e,. If we identify C’ as one of the 
divisors of U’ then A ’ B ’ = d , / e ,  and from the definition of v‘, we have A ‘ + B ’ =  
( U ’ - d , / e ,  - c4)/el. Knowing A’B’ and A’+  B’, as in the case of the 3- j  coefficient, we 
can find A’ and B‘. Thus, in the case of the 6-j  coefficient, we have to find the divisors 
twice. The algorithm for the generation of polynomial zeros of degree 2 of the 6-j  
coefficient, using the method of divisors can now be stated as follows: 

Algorithm 2. 

1 s F‘G E ’  and 1 6  G ’ S  F’ .  E ‘ ,  F’ and G’ are arranged into a nest of loops. 

E ’ + F ’ + G ’ + 2  and c4=cj-2c;.  

(i) Choose E’ to take values 1 to N, and let the values of F’ and G’ be: 

(ii) Find the values of c {  = ( E ’ +  l ) ( F ’ +  1)( G’+ l) ,  c; = c iE’F’G‘ ,  c3 = 

(iii) Find the divisors of c;. Let these be d, .  If U ’ =  d , ,  then from (18 ) ,  U ’ =  
- c2/ d, - d,. 
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(iv) Find the divisors of U’. Let these be e,. If C’=  e,, then A’B’= ( u ’ / C ’ = ) d , / e ,  
and A’+ B’= (v ’ -A‘B’ -c4 ) / e , .  

(v) For 2.4’38 and  A ’ + B ’ + C ’ 6 - 6 ,  let x’=(A’+B’)’-4u’. Then if x’<O, 
no solution exists and so go to (iv); if x’=O, A’=  B’= ( v ‘ - A ‘ B ’ - c 4 ) / 2 e , ;  if x ’>  0 ,  
find n such that x ’ = n 2  for such an  n, A ‘=(v ’ -A’B’ -c4+ne , ) /2e ,  and B’= 
( U ‘ - A ‘ B ‘ -  c4- n e , ) / 2 ,  is a solution provided A’S -2 and  B ’ 6  -2 .  

(vi) Having found the solution ( A ’  and B‘ for a given divisor of U ’ ,  viz C ’ =  e,, 
when D’= -2) repeat the procedure for the next divisor of C’, i.e. go to step (iv). 

(vii) After completing the search for all the divisors of U’, (namely for all e , ) ,  go 
to step (iii) for the next divisor of c,, to find the set of all A’, B‘ and C‘ which satisfy 

(viii) For each A’, B‘, C‘, E‘, F’, G‘ and D’= -2, find the polynomial zero of 
degree 2 of the 6-j  coefficient. 

In  algorithm 2, there arose the necessity of finding the divisors of c; first, and  later 
of finding the divisors of U’. Since the number of divisors is large for large integers, 
we propose an  alternate algorithm to generate the polynomial zeros of degree 2 of the 
6- j  coefficient. To this end, after obtaining the solution for ( 1 8 )  by finding the divisors 
of c;, using the Saalschitzian condition, it is straightforward to show that the expression 
for U‘ can be rewritten as a cubic equation for C’, 

(14).  

c‘3+ a2Ct2+ a, C’+ a,= 0 (15) 
where 

U, = ( ~ 3  + 1) U ,  = v - ~ 4 =  - ( ~ 2 / d ,  + d,  + ~ 4 )  U,= - d j .  
To get the solutions of this cubic equation, let 

-1 2 

It is well known (Abramowitz and Segun 1968) that, if q3+r2>0 ,  ( 1 5 )  has one real 
root and  a pair of complex roots; if q3 + r2  = 0,  all the roots are real and at least two 
are equal; and if q 3  + r2  < 0 all the roots are real. The roots of (15) can be written as 

1 3  r = t ( a l a 2  - 3a,) - n u 2 .  2 1 sa,  

z1  = (SI + s2) -+a2 = a1’3+ pl’3 -sa2 I 

z 2 =  - f ( s l + s 2 ) - f a 2 + f i J 3 ( s ,  -s2) 

z 3 =  -f(sl+s2)-fa,-fiJ3(s,-s2) 
= [ a  e x p ( 2 ~ i ) ] ” ~ + [ p  exp(-2.iri)1”~-fa, 

= [ a  e x p ( - 2 ~ i ) ] ” ~ +  [ p  e x p ( 2 ~ i ) ] ” ~ - + a ~  
where a = r + ( q 3 +  r2)1’2 and p = r - ( q 3 +  
equation (15) satisfy the relations: 

Z I Z 2 Z 3  = -a,  
z,z* + Z 1 Z 3  + zqzj = a ,  
21 + z2+ z3 = -a>. 

The roots z , ,  z 2 ,  z3 of the cubic 

(16 )  

It is to be noted that since we are interested in only integer solutions of (19), the roots 
of (20) must all be real. 

We now propose the alternate algorithm for generating the polynomial zeros of 
degree 2 of the 6-j coefficient. 

Algorithm t u .  

1 S F ’ S  E’ and 1 G G‘G F’. E’, F’ and G’ are arranged into a nest of loops. 
(i) Choose E’ to take the values 1 to N, and let the values of F’ and G‘ be: 
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(ii) Find the values of 

c {  = ( E ‘ + l ) ( F ’ + l ) ( G ‘ + l )  c ;  = ci E’F’G’ 

c3 = E ‘ +  F‘+ G’ c q = c 3 - 2 4 + 2 .  

(iii) Find the divisors of c ; .  Let these be d , .  If U ’ =  d , ,  then from (14), V I =  

(iv) Let 
- ~ 2 /  d ,  - d , ,  

3 I -1 9 a 2  2 r = ~ ( a I a , - 3 a , ) - & a ~  D = q 3 + r 2  

where a,= - d , ,  a ,  = - ( c s +  1) and a,= - c 2 / d ,  - d , .  Also,let ct = r + J D a n d p  = r-JD. 
(v) If D > 0, then a # p, and hence only one real root exists: 

a l / 3 + p 1 / 3 - L ,  3 2  when a20, @ S O  

2 = Ja/ ’ /3 - -$u2 at a = @ ,  when a<O, /3>0 (17) 

- f a *  at c y = - / 3 ,  w h e n a < O , / 3 < O o r a < O , / 3 > 0 .  

(vi) If D = 0, then a = p = r, and hence the real roots are 

-2,.1/3-1 
1 -  3 a2 

1 
Z2 Z3 = - - !a2 when a < 0 ,  p<O. 

(vii) If D < 0, s1 = [ p  e ~ p ( i O ) ] ’ / ~  and  s2 = [ p  e ~ p ( - i O ) ] ’ / ~  where sin 6 = a / p  and 
cos 9 = r / P ,  then the real roots are 

Z ,  = 2p1I3 cos(3e) -$a2 

3 -  

(viii) Having found the real roots of C’ from the cubic equation (19) satisfied by 
it, from (v), (vi) o r  (vii), if C’= e i ,  then 

A’B’ = U ’ /  C’ = d,  / e, A’+ B ‘ =  ( v ’ - A ’ B ’ - c q ) / e , .  (18) 

(ix) For u ’ Z 8  and A ’ + B ’ + C ’ s - 6 ,  let 5 ’ = ( A ’ + B ’ ) * - 4 u 1 .  Then if f < O ,  no 
solution exists and so go to (viii); if f =  0, A ‘ =  B ‘ =  (U’- d , / e ,  - c 4 ) / 2 e , ;  if &’> 0, find 
n such that f = n 2  for such an n, A ’ = ( v ’ - d , / e , - c 4 + n e , ) / 2  and B ’ =  
(U‘- d , / e ,  - c4- n e , ) / 2 ,  is a solution provided A ’ s  -2  and B ’ <  -2 .  

(x) Having found the solution (A’  and B‘ for a given root C’= e , ,  when D‘= - 2 )  
repeat the procedure for the other roots of the cubic equation, if any, by going back 
to step (viii). 

(xi) Go to step (iii) for the next divisor of c;,to find all the A’, B’,  C’ which satisfy 
(14). 

(xii) For each A‘, B’ ,  C’, E’, F’, G‘ and  D ’ = - 2 ,  find the polynomial zeros of 
degree 2 of the 6-j  coefficient. 
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4. Results and discussion 

Algorithm 1 and algorithms 2 and 2a for generating the polynomial zeros of degree 2 
of the 3 - j  and 6-j coefficients, respectively, have been used to produce tables 1 and 2 ,  
for J = j, +j2+j3c 143 in the case of the 3- j  coefficient and a, b, c, d, e or . f S  1 4  
(Srinivasa Rao and Rajeswari 1985a, table IV) in the case of the 6- j  coefficient. Both 
Fortran and common Lisp were used to write the programs based on algorithm 1, and 

Table 1. Polynomial zeros of degree 2 of the 3 - j  coefficient. In the last column the value 
of J = j, + j, + j3 is given. The zeros listed here are inequivalent polynomial zeros of degree 
2. 

j l  J 2  J 3  ml m2 m3 J 

6 4 

9 

13 

- I S  

- 9 2 

12" 6 
6 
- 15 11 

11 8 
11 2 

2 7 
7 
8 

2-5 - T 2 

2 11 - 25 

15 2 

15 11 
16 9 

- 21 16 2 

16 2 
33 - 7 2 

11 3 3  
Y 

13 

11 

21 17 

23 14 
e 18 

43 26 2 
- "s 

2 49 
0 - 53 

- 
19 
7 

- 21 

23 

2 3  
Y 
25 
-5- 

- 

19 

21 - 

21 

21 

2 1  

- 

- - 3; 2 

3; - 
- 2 7  18 

- 3 7  

3 7  - 2 5  
7 7 

2 12 43 -. 

49 20 

5; 

2 28 

7 32 
5i 

2 - 63 

6 7  - 5 5  7 2 
- 7 5  

- 105 
2 

I 3 3  - 141 - 

2 
4 
5 
1 

7 
2 

3 
8 
8 
5 

15 
2 - I 5  
2 
13 
2 
21 
2 

- 

- 

- 

5 
8 
3 
5 
7 
2 
7 

- 19 
2 
I 9 
2 
- 

9 
) 
2 

13  - 
7 

13 

4 
21 
2 

3 9  

- 

- 
17 
41 
45 
4.7 

47 
41 
- 53 

52 
- I t 7  

2 

0 
7 -7 
9 
2 -- 

-2 
-3 

-6 

0 
-5 
-3 

-9 
-2 
-4 

0 

1 
2 

_- 

I5 -- 

I t  _- 
9 

3 
2 

I I  

7 
2 
I 
2 

-_ 

-7- 
_- 
_- 
-7 
-8 

-4 

-11 
-3 
-4 
-9 

-16 
29 
-7 

3.5 
-7 

-T 

15 _- 

I 1  
2 

_- 

i i  

3 7  
2 

_- 
-21 

-23 

__ 119 

35 
-7 

05 _- 

14 
20 
20 
21 
21 
24 
24 
24 
25 
25 
27 
27 
27 
32 
32 
34 
34 
34 
35 
35 
35 
35 
38 
39 
39 
44 
45 
48 
49 
51 
54 
55 
55 
65 
65 
69 
17  

116 
143 

This table has been generated for Algorithm 1 using a Fortran program on a VAX-11/780 
and a Lisp program on a Symbolics computer. The values of D and E were restricted to 10. 
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Table 2. Polynomial zeros of degree 2 o f  the  6- j  coefficient, using either algorithms 2 o r  
2a, up to a, b, c, d, e o r f c  14. The numerator and  denominator parameters of the 4Fi( I )  
are  also given for each entry which corrsponds to a polynomial zero of degree 2 of the 6 - j  
coefficient. Only the first 55 entries are listed but i t  is a complete list up  to that point, as  
can be verified by a comparison with table IV  of Srinivasa Rao and Rajeswari (1985a).  

~ _ _ _ _ _ _ _  

a b e d C f A B C D  E F G  

6 6 3 6 5 6 -5 -3 20 -2 5 4 2  
6 6 5 6 3 6 -5 -3 20 -2 5 4 2  
6 6 6 6 5 3 -5 -3 20 -2 5 4 2  

6 - - 3 - -5 -3 20 -2 5 4 2  
I 6 4 4 6 5 -5 -3 20 -2 5 4 2  
I 6 5 4 6 4 -5 -3 20 -2 5 4 2  
I 

11 1 1  1 1  13 - 

9 I 1  4 13 

11 11 ? - 

I I  Y 1 1  

2 -5 -3 20 -2 5 4 2  
2 2 5 -5 -3 20 -2 5 4 2  
7 2 5 I 4 -5 -3 20 -2 5 4 2  
- I 5  6 5 -5 -3 20 -2 5 4 2  

I 1  - 15 -3 24 -2 8 4 2  8 8 3 
- 17 - 15 3 6 6 __ 15 -6 -3 24 -2 8 4 2  
- 1 7  - 1 s  6 6 3 - 15 -6 -3 24 -2 8 4 2  

- Y - 

4 - I S  

15  

- 

- - - 

Y Y ) 
2 2 

13 -6 - - 

2 2 

2 2 
5 7 

2 2 4 8 -4 -3 22 -2 11 2 1 
2 4 8 -4 -3 22 -2 11 2 1 
3 2 3 4 3 -4 -3 22 -2 11 2 1 
9 8 3 2 -4 -3 22 -2 11 2 1 
9 8 4 I 

2 7 6 5 5  
2 2 6 6 -6 -3 24 -2 8 4 2  

9 9 5 2 -2 -2 25 -2 12 4 4 
2 ; ,  -10 -2 25 -2 4 4 4  

c 
8 
8 

- 17 

17 - 

15 

7 7 15 

9 13 
2 2 
I 1  11 

- 17 - I 7  - 
- 

- 13 - -6 -3 24 -2 8 4 2  
- 1 5  - - -5 -5 27 -2 9 8 8 

9 

9 9 5 
9 9 8 - - -8 -3 28 -2 7 6 3  
- 19 - 15 4 5 6 - '2' -6 -3 24 -2 8 4 2  

Y 9 I 7  - 

7 

1s 

I 5  

15 - 

- I5 - 

2 2 
- 19 ) 1 1  

I 1  
2 8 5 6 -6 -3 24 -2 8 4 2  

2 2 6 5 5  - 15 7 - 6 -5 -5 21 -2 '2" 
I 2 8 8 8 -8 -3 28 -2 163 
2 2 -1 -4 30 -2 8 6 4  9 9 

2 2 7 6 3  13 6 17 5 -8 -3 28 -2 

2 2 8 6 4  - 17 8 8 -7 -4 30 -2 

2 2 6 6 8 -8 -3 28 -2 7 6 3  
2 2 7 8 6 4  8 6 9 

2 2 8 6 4  I 8 

2 7 6 3  
2 -8 -3 28 -2 163 

2 2 8 I 8 -7 -4 30 -2 8 6 4  
2 8 6 4  

- 

8 
- 19 - 

19 - 19 

9 
9 

- 
17 

I ? - 

21 

21 

- 

- 

1 1  

11 

- 19 

I Y  

- 21 - 
- -1 -4 30 -2 - 21 - 

- 21 - 21 2 5 5 - '1' -7 -2 26 -2 13 2 1 
- 21 - 

11 
11 9 6 
11 - 21 5 8 -1 -2 26 -2 13 2 1 
- 23 - 

2 
21 - I '  -1 -4 30 -2 
- 17 - 13 - 13 8 5 -8 -3 28 -2 

1: - 15 - 13 - 

5 Y 
2 2 
17 

- 2 3  - 19 

- 2 3  11 8 - 17 8 -11 -2 30 -2 10 4 2 
- 25 11 7 - 17 1 -1 1 -2 30 -2 I O  4 2 
- 2s - 23 4 7 8 - I '  -11 -2 30 -2 10 4 2 

11 - 

I - 13 -7 -4 30 -2 I 7 
5 

2 

2 

2 
7 

2 7 
5 

2 

2 2 

- 25 12 - 1s 2' - -7 -4 35 -2 14 7 2 
- 25 12 - I 7  21 - -8 -3 35 -2 14 8 1 
- 25 25 8 - 17 ; 11 -7 -4 35 -2 14 7 2 
13 12 9 5 12 12 -8 -5 39 -2 12 9 4 
13 12 12 5 12 9 -8 -5 39 -2 12 9 4 
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{ ( 3  5 3 ) / 2  ( U + 1 ) / 2  } =  2 u - 2  ( U + 1 ) / 2  

Table 2. (continued) 

a h e d e f A B C D  E F G  

2 u - 2  U U 
U - 1  1 1 

U 2 2  
3 u - 4  2 u  2 u  

-15 
-10 

-7 
-8 
-7 
-7 
-7 
-7 

-2 36 -2 9 6 3  
-4 39 -2 12 7 5 
-6 40 -2 14 7 5 
-5 39 -2 12 9 4 
-6 40 -2 14 7 5 
-4 35 -2 14 7 2 
-4 35 -2 14 7 2 
-6 40 -2 14 7 5 

the polynomial zeros of degree 2 of the 3-j coefficient, for D, E S 10, were generated 
on VAX-l1/780 and Symbolics computers, respectively. Common Lisp was used to 
write the programs based on algorithms 2 and 2a and the polynomial zeros of degree 
2 of the 6- j  coefficient, for E, F, G S  14, were generated on the Symbolics computer. 
Algorithm 2 a  was found to be much more efficient than algorithm 2. 

Below the chosen limits of angular momenta, the polynomial zeros of degree 2 
were found to be fewer in number than the polynomial zeros of degree 1. It is to be 
noted that the polynomial related to the Racah operators which occur in the study of 
Louck and Stein (1987) and Beyer et a1 (1986) are not orthogonal polynomials. The 
algorithms proposed here generate all the polynomial zeros of degree 2 of the 3-j and 
6- j  coefficients below the limits given for the angular momenta involved. These 
algorithms are simple compared to the method adopted by Louck and Stein (1987) 
for the 3-j  coefficient and by Brudno and Louck (1985) and Beyer et a1 (1986) for the 
6- j  coefficient. 

In the case of the 3-j coefficient, Louck and Stein (1987) obtained all the degree 
2 (or weight 2 )  zeros and classified them by orbits of a discrete infinite-order subgroup 
of the Lorentz group SO(1, l ) .  In the case of the 6-j coefficient Brudno and Louck 
(1985) obtained the polynomial zeros of degree 2 for ( 4 2  2j2 and 2j2 being a 
positive integer, as the orbit solutions of the Pell equation: 3 x 2 - 4 y 2 = y ,  where 
x ~ 2 y - i  and 2 y  is a positive integer 2 2 .  This work was extended by Beyer et a1 
(1986) who found nine cases in which (10) factors into two quadratic polynomial parts 
over the integers, one of which after transformation into a generalised Pell equation 
of the form ( l l ) ,  yields the polynomial zeros of degree 2. They then use the known 
orbit classification of solutions of Pell's equation. However, all the polynomial zeros 
of degree 2 cannot be obtained by this method. In this context, it is to be noted that 
algorithms 2 or 2a proposed here yields all the polynomial zeros of degree 2 of the 
6-j coefficient. 

We wish to point out that, using (7) and the definition of the a and p, when we 
write the Bargmann-Shelepin 4 x 3 array for the closed form expression given by Beyer 
et a1 (1986) for the polynomial zeros of degree 2 of the 6-j  coefficient, we get 

j;}, j ,  
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3 u - 3  2 u - 1  2 u - 1  
3 u / 2  ( U + 1 ) / 2  ( 2 U + 3 ) / 2  U-1  1 1 

{(2U-1):2 2 u - 1  U12 2 2 
3 U - 1  2 U + l  2 U t - 1  

where U = 2,3, . . . . Obviously, since the smallest entry in the Bargmann-Shelepin 
array defines the degree (or weight) of the polynomial zero of the 6-j  coefficient, the 
above, viz ( 3 . 1 5 ~ )  and (3.15b) in Beyer et a1 (1986), are degree 1 zeros and not 
polynomial zeros of degree 2, as claimed by them. 

The question of the physical significance of the polynomial zeros of angular 
momentum coefficients is still an open question and it is hoped that the detailed tables 
of degree 1 and degree 2 zeros, which are now available, will provide the essential 
background for such studies. 
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